Falling particle receiver (FPR) systems are a rapidly developing technology for concentrating solar power applications. Solid particles are used as both the heat transfer fluid and system thermal energy storage media. Through the direct irradiation of the solid particles, flux and temperature limitations of tube-bundle receives can be overcome, leading to higher operating temperatures and energy conversion efficiencies. Candidate particles for FPR systems must be resistant to changes in optical properties during long term exposure to high temperatures and thermal cycling using highly concentrated solar irradiance. Five candidate particles, CARBOBEAD HSP 40/70, CARBOBEAD CP 40/100, including three novel particles, CARBOBEAD MAX HD 35, CARBOBEAD HD 350, and WanLi Diamond Black, were tested using simulated solar flux cycling and tube furnace thermal aging. Each particle candidate was exposed for 10 000 cycles (simulating the exposure of a 30-year lifetime) using a shutter to attenuate the solar simulator flux. Feedback from a pyrometer temperature measurement of the irradiated particle surface was used to control the maximum temperatures of 775 °C and 975 °C. Particle solar-weighted absorptivity and emissivity were measured at 2000 cycle intervals. Particle thermal degradation was also studied by heating particles to 800 °C, 900 °C, and 1000 °C for 300 hours in a tube furnace purged with bottled unpurified air. Here particle absorptivity and emissivity were measured at 100-hour intervals. Measurements taken after irradiance cycling and thermal aging were compared to measurements taken from as-received particles. WanLi Diamond Black particles had the highest initial value for solar weighted absorptance, 96%, but degraded up to 4% in irradiance cycling and 6% in thermal aging. CARBOBEAD HSP 40/70 particles currently in use in the prototype FPR at the National Solar Thermal Test Facility had an initial value of 95% solar absorptance with up to a 1% drop after irradiance cycling and 4% drop after 1000 °C thermal aging.

This content is only available via PDF.
You do not currently have access to this content.