Various ganged heliostat concepts have been proposed in the past. The attractive aspect of ganged heliostat concepts is multiple heliostats are grouped so that pedestals, tracking drives, and other components can be shared, thus reducing the number of components. The reduction in the number of components is thought to significantly reduce cost. However, since the drives and tracking mechanisms are shared, accurate on-sun tracking of grouped heliostats becomes challenging because the angular degrees-of-freedom are now limited for the multiple number of combined heliostats. In this paper, the preliminary evaluation of the on-sun tracking of a novel tensile-based cable suspended ganged heliostat concept is provided. In this concept, multiple heliostats are attached to two guide cables. The cables are attached to rotation spreader arms which are anchored to end posts on two ends. The guide cables form a catenary which makes tracking on-sun interesting and challenging. Tracking is performed by rotating the end plates that the two cables are attached to and rotating the individual heliostats in one axis. An additional degree-of-freedom can be added by differentially tensioning the two cables, but this may be challenging to do in practice. Manual on-sun tracking was demonstrated on small-scale prototypes. The rotation arms were coarsely controlled with linear actuators, and the individual heliostats were hand-adjusted in local pitch angle and locked in place with set screws. The coarse angle adjustments showed the tracking accuracy was 3–4 milli-radians. However, with better angle control mechanisms the tracking accuracy can be drastically improved. In this paper, we provide tracking data that was collected for a day, which showed feasibility for automated on-sun tracking. The next steps are to implement better angle control mechanisms and develop tracking algorithms so that the ganged heliostats can automatically track.

This content is only available via PDF.
You do not currently have access to this content.