Falling particle receivers are an emerging technology for use in concentrating solar power systems. In this work, quartz tubes cut in half to form tube shells (referred to as quartz half-shells) are investigated for use as a full or partial aperture cover to reduce radiative and advective losses from the receiver. A receiver subdomain and surrounding air volume are modeled using ANSYS® Fluent®. The model is used to simulate fluid dynamics and heat transfer for the following cases: (1) open aperture, (2) aperture fully covered by quartz half-shells, and (3) aperture partially covered by quartz half-shells. We compare the percentage of total incident solar power lost due to conduction through the receiver walls, advective losses through the aperture, and radiation exiting out of the aperture. Contrary to expected outcomes, simulation results using the simplified receiver subdomain show that quartz aperture covers can increase radiative losses and, in the partially covered case, also increase advective losses. These increased heat losses are driven by elevated quartz half-shell temperatures and have the potential to be mitigated by active cooling and/or material selection.

This content is only available via PDF.
You do not currently have access to this content.