Developing small scale turbines pauses challenges in terms of increased stresses due to high rotational speed leading to increase in component thicknesses and turbine overall weight. Therefore this study assesses both; the structural and aerodynamic performance of a Small Scale Radial Turbine SSRT by integrating finite-element methods FEM and Computational Fluid Dynamic CFD. Using Vista preliminary design model in ANSYS and detailed 3D CFD optimization, SSRT with 1–5 kW power for solar powered Brayton cycle was developed with high efficiency of 89.2%. Then both; the turbine’s hub and blades were structurally analysed under various loading conditions to investigate the effect of various rotational speeds and blade shapes on the stress distribution and deformation of the blades. The results of the current study showed that a maximum increment of 65% stress and 57% deformation was noticed when reaching the maximum studied rotational speed at inlet air temperature of 450 K.

This content is only available via PDF.
You do not currently have access to this content.