A precise calculation of the environmental burden of food products is a prerequisite for creating food eco-labeling as a strategy for environmental impact mitigation. Life cycle assessment (LCA) is widely used for this purpose, and proxy data is traditionally used due to the shortage of data. Uncertainties are introduced in this process since food products contain a variety of origins. In this study, data from the United States Department of Agriculture (USDA) is used to examine the temporal and geographic variability of the global warming potential (GWP) of seven kinds of field crops. Artificial neural network (ANN) models are then used to predict the GWP of these products at both product and category levels based on temporal and spatial variables such as soil properties, climate, latitude and elevation. The results show that temporally, a monotonic GWP trend was found in corn, soybean and winter wheat. The average geographic variability is more than 27% and is larger than temporal variability. ANN was proven to be a good prediction tool at the product level, with a coefficient of correlation (CC) of at least 0.78 in the simplest model and higher CCs when the number of neurons increases. Predictions with ANN at the category level shows that the selected variables cannot fully encompass all temporal and geographical variability.
Skip Nav Destination
ASME 2018 12th International Conference on Energy Sustainability collocated with the ASME 2018 Power Conference and the ASME 2018 Nuclear Forum
June 24–28, 2018
Lake Buena Vista, Florida, USA
Conference Sponsors:
- Advanced Energy Systems Division
- Solar Energy Division
ISBN:
978-0-7918-5141-8
PROCEEDINGS PAPER
Estimating the Agricultural Environmental Burden As Part of a Holistic Life Cycle Assessment of Food
A. S. Fleischer,
A. S. Fleischer
Villanova University, Villanova, PA
Search for other works by this author on:
A. P. Wemhoff,
A. P. Wemhoff
Villanova University, Villanova, PA
Search for other works by this author on:
R. Lee
R. Lee
Villanova University, Villanova, PA
Search for other works by this author on:
T. Dai
Villanova University, Villanova, PA
A. S. Fleischer
Villanova University, Villanova, PA
A. P. Wemhoff
Villanova University, Villanova, PA
R. Lee
Villanova University, Villanova, PA
Paper No:
ES2018-7564, V001T01A004; 8 pages
Published Online:
October 4, 2018
Citation
Dai, T, Fleischer, AS, Wemhoff, AP, & Lee, R. "Estimating the Agricultural Environmental Burden As Part of a Holistic Life Cycle Assessment of Food." Proceedings of the ASME 2018 12th International Conference on Energy Sustainability collocated with the ASME 2018 Power Conference and the ASME 2018 Nuclear Forum. ASME 2018 12th International Conference on Energy Sustainability. Lake Buena Vista, Florida, USA. June 24–28, 2018. V001T01A004. ASME. https://doi.org/10.1115/ES2018-7564
Download citation file:
24
Views
Related Proceedings Papers
Related Articles
Life Cycle Assessment of Selected Ammonia Production Technologies From the Perspective of Ammonia as a Fuel for Heavy-Duty Vehicle
J. Energy Resour. Technol (March,2024)
A method for Estimating the Degree of Uncertainty With Respect to Life Cycle Assessment During Design
J. Mech. Des (September,2010)
Land–Energy–Food Nexus: Competition and Societal Impact of Land Use for Sustainable Energy and Food Production—A Review
J. Energy Resour. Technol (November,2023)
Related Chapters
Part A: Farm Waste to Energy
Biomass and Waste Energy Applications
Estimating Resilient Modulus Using Neural Network Models
Intelligent Engineering Systems Through Artificial Neural Networks, Volume 17
Environmental Site Profiling: A Comparative Study
Intelligent Engineering Systems Through Artificial Neural Networks, Volume 17