Air pollution is a leading public health concern that needs to be tackled. About 30% of the total greenhouse gas emissions, such as CO, HC and NOx are due to automobiles. By 2030, the US Department of Transportation aims to reduce light duty vehicle emissions by 18%. This can be achieved by public policy approaches such as implementing emission control norms and performance improvements such as exhaust system design.

In this work, the implementation of a pure Zeolite catalyst to reduce the exhaust CO2 emission of a SI engine is studied theoretically and experimentally. The complete exhaust system including the catalytic converter, muffler, and pipes is modeled in a 3D CAD modeling software, using the engine specifications. Current expensive precious metals in the catalytic converter are replaced with a binding agent along with Zeolite catalyst. The exhaust system is fabricated and the experimental tests are performed at the maximum engine RPM to obtain threshold emission reduction values. The results showed obtaining an emission reduction of CO2 at a lower cost. Furthermore, it is found that employing Zeolite sieves can further reduce the pollutant emission at a similar cost.

This content is only available via PDF.
You do not currently have access to this content.