A computational heat-transfer and thermodynamic-cycle model was developed to evaluate the performance of an integrated solar and combined-cycle power plant using a prototype linear Fresnel reflector. The solar receiver consists of a secondary reflector and single-tube absorber, with a selective surface and glass cover to optimize collector efficiency. The solar integration occurs in the high-pressure steam drum of the heat recovery steam generator, to boost power output when solar energy is available without the need for an auxiliary fossil-fueled boiler or thermal storage. The solar resource and weather data used in the model were for the municipality of Bom Jesus da Lapa, Brazil.

Results indicated that, over a year, 8.25 GWh of solar thermal energy was provided to the plant, with an incremental power plant output of 2.76 GWh. While these numbers were small relative to baseline power plant operation using only fossil-fuel sources, the utilization of additional solar thermal modules would produce a more significant impact.

This content is only available via PDF.
You do not currently have access to this content.