From a practical perspective, economics drive the development of distributed energy resource (DER) systems. However, the adoption of a DER system provides an opportunity for the end user to completely control their environmental footprint. This work examines the process of designing a DER system while controlling carbon emissions. A mixed integer linear program (MILP) for sizing and dispatching a DER system is developed. The MILP includes a novel formulation of constraints that govern utility natural gas, generator operational state, and charging of thermal energy storage. The MILP is executed using real energy demand data for the University of California, Irvine to optimally design a DER system that minimizes cost while also reducing carbon emissions by a specified quantity. Two primary technology scenarios are explored (DER including storage with and without electrical export). A trajectory of DER technology adoption is determined for both technology scenarios. The different operational methods through which each system achieved lower carbon emissions at minimum cost is examined. Finally, the cost to reduce carbon emissions is calculated for both technology scenarios.

This content is only available via PDF.
You do not currently have access to this content.