Offshore wind farms are presently facing numerous technical challenges that are affecting their viability. High failure rates of expensive nacelle-based electronics and gearboxes are particularly problematic. On-going research is investigating the possibility of shifting to a seawater-based hydraulic power transmission, whereby wind turbines pressurise seawater that is transmitted across a high-pressure pipeline network. A 9-turbine hydraulic wind farm with three different configurations is simulated in the present work and a previously developed method for open-loop pressure control of a single turbine has been adapted for this multiple-turbine scenario. A conceptual quasi-constant-pressure accumulator is also included in the model. This system is directly integrated within each hydraulic wind turbine and it allows the output power from the wind farm to be scheduled on an hourly basis. The shift in control methodology when integrating storage is illustrated in the present work. Simulation results indicate a strong relationship between hydraulic performance attributes and the specific wind turbine array layout. The beneficial effects of storage can also be observed, particularly in smoothing the output power and rendering it more useable. Finally, the energy yields from 24-hour simulations of the 9-turbine wind farms are calculated. Integrated storage leads to a slight increase in yield since it eliminates bursts of high flow, which induce higher frictional losses in the pipeline network.
- Advanced Energy Systems Division
- Solar Energy Division
Numerical Analysis of a Large-Scale Hydraulic Wind Farm With Integrated Hydraulic Energy Storage
Buhagiar, D, & Sant, T. "Numerical Analysis of a Large-Scale Hydraulic Wind Farm With Integrated Hydraulic Energy Storage." Proceedings of the ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. Volume 1: Biofuels, Hydrogen, Syngas, and Alternate Fuels; CHP and Hybrid Power and Energy Systems; Concentrating Solar Power; Energy Storage; Environmental, Economic, and Policy Considerations of Advanced Energy Systems; Geothermal, Ocean, and Emerging Energy Technologies; Photovoltaics; Posters; Solar Chemistry; Sustainable Building Energy Systems; Sustainable Infrastructure and Transportation; Thermodynamic Analysis of Energy Systems; Wind Energy Systems and Technologies. Charlotte, North Carolina, USA. June 26–30, 2016. V001T14A002. ASME. https://doi.org/10.1115/ES2016-59539
Download citation file: