In an effort to increase thermal energy storage densities and turbine inlet temperatures in concentrating solar power (CSP) systems, focus on energy storage media has shifted from molten salts to solid particles. These solid particles are stable at temperatures far greater than that of molten salts, allowing the use of efficient high-temperature turbines in the power cycle. Furthermore, many of the solid particles under development store heat via reversible chemical reactions (thermochemical energy storage, TCES) in addition to the heat they store as sensible energy. The heat-storing reaction is often the thermal reduction of a metal oxide. If coupled to an Air-Brayton system, wherein air is used as the turbine working fluid, the subsequent extraction of both reaction and sensible heat, as well as the transfer of heat to the working fluid, can be accomplished in a direct-contact, counter-flow reoxidation reactor. However, there are several design challenges unique to such a reactor, such as maintaining requisite residence times for reactions to occur, particle conveying and mitigation of entrainment, and the balance of kinetics and heat transfer rates to achieve reactor outlet temperatures in excess of 1200 °C. In this paper, insights to addressing these challenges are offered, and design and operational tradeoffs that arise in this highly-coupled system are introduced and discussed.

This content is only available via PDF.
You do not currently have access to this content.