This paper evaluates novel particle release patterns for high-temperature falling particle receivers. Spatial release patterns resembling triangular and square waves are investigated and compared to the conventional straight-line particle release. A design of experiments was developed, and a simulation matrix was developed that investigated three two-level factors: amplitude, wavelength, and wave type. Results show that the wave-like patterns increased both the particle temperature rise and thermal efficiency of the receiver relative to the straight-line particle release. Larger amplitudes and smaller wavelengths increased the performance by creating a volumetric heating effect that increased light absorption and reduced heat loss. Experiments are also being designed to investigate the hydraulic and thermal performance of these new particle release configurations.
- Advanced Energy Systems Division
- Solar Energy Division
Volumetric Particle Receivers for Increased Light Trapping and Heating
Ho, CK, Mills, B, & Christian, JM. "Volumetric Particle Receivers for Increased Light Trapping and Heating." Proceedings of the ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. Volume 1: Biofuels, Hydrogen, Syngas, and Alternate Fuels; CHP and Hybrid Power and Energy Systems; Concentrating Solar Power; Energy Storage; Environmental, Economic, and Policy Considerations of Advanced Energy Systems; Geothermal, Ocean, and Emerging Energy Technologies; Photovoltaics; Posters; Solar Chemistry; Sustainable Building Energy Systems; Sustainable Infrastructure and Transportation; Thermodynamic Analysis of Energy Systems; Wind Energy Systems and Technologies. Charlotte, North Carolina, USA. June 26–30, 2016. V001T04A016. ASME. https://doi.org/10.1115/ES2016-59544
Download citation file: