The increasing demand for renewable energy sources necessitates the development of more efficient technologies. Concentrated solar power (CSP) towers exhibit promising qualities, as temperatures greater than 1000°C are possible. The heat transfer fluid implemented to capture the sun’s energy significantly impacts the overall performance of a CSP system. Current fluids, such as molten nitrate salts and steam, have limitations; molten salts are limited by their small operational temperature range while steam requires high pressures and is unable to act as an effective storage medium. As a result, a new heat transfer fluid composed of ceramic particles is being investigated, as ceramic particles demonstrate no practical limit on operation temperature and have the ability to act as a storage medium. This study sought to further investigate the use of dense granular flows as a new heat transfer fluid. Previous work validated the use of such flows as a heat transfer fluid; the present work examined the effect of flow rate, as well as the particle size and type on the heat transfer to the particle fluid. Three different types of particles were tested, along with two different diameter particles. Of the three materials tested, the particle type did not appear to effect the heat transfer. Particle diameter, however, did effect the heat transfer, as a smaller diameter particle yielded slightly higher heat transfer to the fluid. Flow rates ranging from 30 to 200 kg/m2-s were tested. Initially, the heat transfer to the flow, characterized by the convective heat transfer coefficient, decreased with increasing flow rate. However, at approximately 80 kg/m2-s, the heat transfer coefficient began to increase with increasing flow rate. These results indicate that a dense granular flow consisting of small diameter particles and traveling at very slow or fast flow rates yields the best wall to “fluid” heat transfer.
- Advanced Energy Systems Division
- Solar Energy Division
Effect of Flow Rate and Particle Size on Heat Transfer to Dense Granular Flows
Watkins, MF, & Gould, RD. "Effect of Flow Rate and Particle Size on Heat Transfer to Dense Granular Flows." Proceedings of the ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. Volume 1: Biofuels, Hydrogen, Syngas, and Alternate Fuels; CHP and Hybrid Power and Energy Systems; Concentrating Solar Power; Energy Storage; Environmental, Economic, and Policy Considerations of Advanced Energy Systems; Geothermal, Ocean, and Emerging Energy Technologies; Photovoltaics; Posters; Solar Chemistry; Sustainable Building Energy Systems; Sustainable Infrastructure and Transportation; Thermodynamic Analysis of Energy Systems; Wind Energy Systems and Technologies. Charlotte, North Carolina, USA. June 26–30, 2016. V001T04A008. ASME. https://doi.org/10.1115/ES2016-59258
Download citation file: