A unique photobioreactor (PBR) constructed with acrylic sheet was used to grow S. Leopoliensis in 3.36 litters of Scully’s growth media. The PBR width was 51mm with a 273mm length and a growth media depth of 271mm. One of the PBR unique features was that it used a plenum and a porous membrane to inject air enriched with carbon dioxide into the growth medium. The HDPE (high-density polyethylene sintered beads) porous membrane served as the barrier between the reactor volume and the mixing plenum of the PBR. The air bubbled up through the porous membrane into the reactor volume with the growth medium mixing the contents of the reactor volume and transfer oxygen and carbon dioxide between the growth media and the bubbles. The second unique feature of the PBR is that it incorporated light guides in the design. The light guides were acrylic rods 9.5mm in diameter and a length projecting into the reactor volume of 38.1mm. The guides did not touch the opposite PBR wall. The light guides were abraded with sand paper on the outer to enhance light transfer from the guide to the growth medium. There were eight rows of light guides on each of the two PBR walls that were 273mm in length. Each row consisted of eight light guides space 34.1mm apart and 17.1mm from the side (short) walls of the PBR. Light was provided by two LED panels with 384 LED lights on each panel. The light from the panels had a wavelength of 650nm. The Light guides protruded through the PBR wall and light from the LED panels entered the light guide ends or transferred through the wall directly into the PBR reactor volume. The light guide ends occupied approximately 16% of the PBR wall area lit by the LED panels. The PBR produced 7.1g per litter of algal biomass in a 14 day growth cycle which encompassed a 3 day lag phase. The light guides disrupted the bubble flow pattern not allowing an obvious riser and/or downcomer to develop in the reactor volume. The disrupted flow pattern enhanced mixing and gas transfer. The enhanced mixing rotated the algal cells from more to less areas of the reactor volume more often aiding photosynthesis in a manner similar to flashing lights.

This content is only available via PDF.
You do not currently have access to this content.