Human activities like fossil fuel retrieval, biomass burning, waste disposal, and residential and commercial use of energy are continuing to effect the Earth’s energy budget by changing the emissions and resulting atmospheric concentrations of radioactively important gases, aerosols, and by changing land surface properties. These activities negatively contribute to Earth’s greenhouse gases including water vapor (H2O), carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ozone (O3). Approximately 82% of greenhouse gases are developed from the United States, Asia, and Europe alone. Food and their extraction processes, including transportation of those extracts, account for about 35% of those greenhouse gases. This includes wasted, rotten, and uneaten food. About 40% of food in the United States today goes uneaten, resulting in more than 20 pounds of food per person every month. Not only does this mean that Americans are throwing out upwards of $165 billion each year, amounting to $1,350 to more than $2,275 annually in waste per family of four, but also 25 percent of all freshwater and huge amounts of unnecessary chemicals, energy, and land. Moreover, almost all of that uneaten food ends up rotting in landfills. This number has increased, in regards to organic matter, from approximately 16 percent of U.S. methane emissions in 2010 upwards to 25 percent in 2012. With the increase in supply and demand of food, in addition to the lower consumer cost, the statistics of wasted feedstocks are rapidly increasing. The purpose of this research is to utilize wasted food to extract natural hydrocarbon oils through thermal depolymerization in order to develop an alternative fuel. Thermal depolymerization is a hydrous pyrolysis process that breaks down long chained polymers into simpler compounds and light hydrocarbons, much of which can be separated and used for fuel. Polymers include essentially all organic matter i.e. matter made of living or once-living things, which include petroleum products like plastic, styro-foam, and nylon, as well as plant and animal material, and manure. Potatoes and corn starch were used as feedstocks for this research and thermal depolymerization was conducted on the feedstocks for analysis and fuel collection. With optimum use and a mature thermal depolymerization technology, the Earth might comfortably support 10 times its current population at a high standard of living. There is enough biomass existing now accessible on the surface of the earth to provide 100 years of human energy use.

This content is only available via PDF.
You do not currently have access to this content.