This paper presents the results from an economic and environmental feasibility study on photovoltaic PV and wind technologies for a community of 200 homes in Superior, CO. The electrical load profile assumed for the community, the solar resources available, and the wind resources are defined. Specific PV modules and wind turbines are identified. A simulation model was created in HOMER software and the specific model assumptions and reasoning presented. The results of the simulation show that the baseline scenario of grid electricity use is the best economic decision under the status quo system parameters. However, it is shown through sensitivity analyses and requirements for specific levels of renewable energy use, that the best possible system for the community should not be evaluated solely on the status quo economic parameters. PV is shown to be the best renewable technology to consider while wind energy proves to be a poor choice for the specific location of the community. Emissions of CO2 and other pollutants are greatly reduced under the recommended system design.
- Advanced Energy Systems Division
- Solar Energy Division
The Economic and Environmental Benefits From Distributed PV and Wind Technologies in a Colorado Community Available to Purchase
Krarti, M. "The Economic and Environmental Benefits From Distributed PV and Wind Technologies in a Colorado Community." Proceedings of the ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. Volume 2: Photovoltaics; Renewable-Non-Renewable Hybrid Power System; Smart Grid, Micro-Grid Concepts; Energy Storage; Solar Chemistry; Solar Heating and Cooling; Sustainable Cities and Communities, Transportation; Symposium on Integrated/Sustainable Building Equipment and Systems; Thermofluid Analysis of Energy Systems Including Exergy and Thermoeconomics; Wind Energy Systems and Technologies. San Diego, California, USA. June 28–July 2, 2015. V002T16A003. ASME. https://doi.org/10.1115/ES2015-49130
Download citation file: