This study investigates the techno-economic feasibility of solar-powered absorption cooling and heating systems for a large-sized hotel building in Sydney, Australia. The proposed plant primarily consists of evacuated tube solar collectors, a hot water storage tank, a single-effect absorption chiller, and a backup gas burner. Dynamic simulation of the system has been carried out using the TRNSYS environment. Several control strategies have been implemented in the model to increase the overall efficiency of the system. Solar fraction and levelized total cost of the system have been considered as energetic and economic indicators, respectively. The parametric study results reveal that the optimal values of the storage tank volume and specific collector area are 70 L/m2 and 4 m2 per kW cooling capacity of the chiller, corresponding to the solar fraction of ∼72% and levelized total cost of ∼874,000 AUD/year. Finally, the payback period of the solar equipment is calculated to be 30.8 years, reiterating this technology still needs a great deal of subsidy in order to be economically competitive with conventional air-conditioning systems.

This content is only available via PDF.
You do not currently have access to this content.