Thermophotovoltaic (TPV) devices are popular energy converters due to providing low noise, low thermal-mechanical stresses and portability. The conversion efficiency of TPVs is still low due to mistuned spectral properties between thermal selective emitters and the TPV cell. Using thermal selective emitters that are well-matched to the TPV cell spectrum enhances the conversion efficiency of TPVs. Several thermal selective emitters, composed of 1-D complex multilayer structures with rectangular gratings, have been proposed. Cost, fabrication and stability factors have been major problems for their application on TPV modules. In this paper, a 1-D tungsten thermal emitter is optimized which exhibits close to blackbody emittance near the band-gap of a GaInAsSb TPV cell and sharp cutoff for longer wavelengths. The emitter is at 1200K, and is designed and optimized by modeling triangular grooves to excite localized groove modes which are well-matched to the GaInAsSb TPV cell external quantum efficiency (EQE) for high efficiency energy conversion. We suggest that a quasi-monochromatic, narrow-band and coherent emitter at a frequency near the energy band-gap of the converter is an ideal source to achieve high conversion efficiency.

This content is only available via PDF.
You do not currently have access to this content.