Closed-loop super-critical carbon dioxide (sCO2) Brayton cycles are being evaluated in combination with concentrating solar power to provide higher thermal-to-electric conversion efficiencies relative to conventional steam Rankine cycles. However, high temperatures (650–700°C) and pressures (20–25 MPa) are required in the solar receiver. In this study, an extensive material review was performed along with a tube size optimization following the ASME Boiler and Pressure Vessel Code and B31.1 and B313.3 codes respectively. Subsequently, a thermal-structural model was developed using ANSYS Fluent and Structural to design and analyze the tubular receiver that could provide the heat input for a ∼2 MWth plant. The receiver will be required to provide an outlet temperature of 650°C (at 25 MPa) or 700°C (at 20 MPa). The induced thermal stresses were applied using a temperature gradient throughout the tube while a constant pressure load was applied on the inner wall. The resulting stresses have been validated analytically using constant surface temperatures. The cyclic loading analysis was performed using the Larson-Miller creep model in nCode Design Life to define the structural integrity of the receiver over the desired lifetime of ∼10,000 cycles. The results have shown that the stresses induced by the thermal and pressure load can be withstood by the tubes selected. The creep-fatigue analysis displayed the damage accumulation due to the cycling and the permanent deformation of the tubes. Nonetheless, they are able to support the required lifetime. As a result, a complete model to verify the structural integrity and thermal performance of a high temperature and pressure receiver has been developed. This work will serve as reference for future design and evaluation of future direct and indirect tubular receivers.

This content is only available via PDF.
You do not currently have access to this content.