Fast pyrolysis is one method of creating bio-oil from biomass such as native prairie grasses, corn stover, and other organic commercial and industrial byproducts. In this study, fast pyrolysis of Brassica carinata meal, or simply carinata meal, was performed in an auger-type reactor. The bio-oil produced in the reactor was collected and analyzed to determine the effects of reactor and condenser temperatures on the properties of the bio-oil produced. Five reactor temperatures and two condenser temperatures were investigated in this research. The rheological properties of the bio-oil samples were analyzed, water content was determined with the Karl Fisher method, energy content was measured with a bomb calorimeter, and acidity was determined using a total acid titration test. The aging characteristics of the bio-oil were also investigated at seven days, fourteen days, and twenty-eight days after the oil was created to determine what effect, if any, time had on the its properties. Preliminary results indicate that any reactor temperature above 500°C produces bio-oils of similar composition, although with changes in yield. In addition, the short-term aging results of the bio-oils have shown insignificant changes in total acid number, water content, and energy content.
- Advanced Energy Systems Division
- Solar Energy Division
Investigation of Fast Pyrolysis of Brassica Carinata in an Auger Type Reactor Available to Purchase
Sonnek, WD, Gent, SP, & Michna, GJ. "Investigation of Fast Pyrolysis of Brassica Carinata in an Auger Type Reactor." Proceedings of the ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. Volume 1: Advances in Solar Buildings and Conservation; Climate Control and the Environment; Alternate Fuels and Infrastructure; ARPA-E; Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power; Economic, Environmental, and Policy Aspects of Alternate Energy; Geothermal Energy, Harvesting, Ocean Energy and Other Emerging Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Micro and Nano Technology Applications and Materials. San Diego, California, USA. June 28–July 2, 2015. V001T02A002. ASME. https://doi.org/10.1115/ES2015-49376
Download citation file: