The goal of this project was to develop a model for a Combined Photovoltaic/Thermal (PV/T) unit to ease in the assessment of potential changes to the unit before fabrication of actual parts. This process reduces the time to assess changes in the system; once the initial model is created changes are relatively simple. It also reduces cost incurred for actual testing by certified labs and can simulate output variations in different climate conditions, site locations and times of year. A commercially available PV/T unit was chosen for analysis, which utilizes two water channels under the photovoltaic assembly instead of the conventional sheet-and-tube design to actively cool the solar cells while also collecting thermal energy that can be used for heating water or air via a heat transfer system. The project described in this paper modeled the PV/T unit in two ways: (1) as a one-dimensional theoretical model and (2) modeling the system in ANSYS FLUENT and simulating the fluid flow, energy and radiation models using computational fluid dynamics (CFD). The baseline CFD model was correlated to published Solar Rating and Certification Corporation (SRCC) test data for pressure drop and thermal performance to gage accuracy of the model. Through a literature search of past work on similar modules and systems, several potential improvements to the unit were identified and a detailed analysis was conducted by individually adding each to the theoretical model, then comparing them to the output of the baseline model. Combinations of improvements were evaluated as well and assessed based on output improvement, technical feasibility and expected cost. The accuracy of the 1-D model was compared to the CFD model to assess the benefits gained from the added complexity of using computational fluid dynamics.

This content is only available via PDF.
You do not currently have access to this content.