Northern Arizona University has developed a methanol synthesis unit that directly converts carbon dioxide and hydrogen into methanol and water. The methanol synthesis unit consists of: a high pressure side that includes a compressor, a reactor, and a throttling valve; and a low pressure side that includes a knockout drum, and a mixer where fresh gas enters the system. Methanol and water are produced at high pressure in the reactor and then exit the system under low pressure and temperature in the knockout drum. The remaining, unreacted recycle gas that leaves the knockout drum is mixed with fresh synthesis gas before being sent back through the synthesis loop. The unit operates entirely on electricity and includes a high-pressure electrolyzer to obtain gaseous hydrogen and oxygen directly from purified water. Thus, the sole inputs to the trailer are water, carbon dioxide and electricity, while the sole outputs are methanol, oxygen, and water. A distillation unit separates the methanol and water mixture on site so that the synthesized water can be reused in the electrolyzer. Here, we describe and characterize the operation of the methanol synthesis unit and offer some possible design improvements for future iterations of the device, based on experience.

This content is only available via PDF.
You do not currently have access to this content.