Groundwater source heat pumps exploit the difference between the ground surface temperature and the nearly constant temperature of shallow groundwater. This project characterizes two areas for geothermal heating and cooling potential, Mason County in central Illinois and the American Bottoms area in southwestern Illinois. Both areas are underlain by thick sand and gravel aquifers and groundwater is readily available. Weather data, including monthly high and low temperatures and heating and cooling degree days, were compiled for both study areas. The heating and cooling requirements for a single-family house were estimated using two independent models that use weather data as input. The groundwater flow rates needed to meet these heating and cooling requirements were calculated using typical heat pump coefficient of performance values. The groundwater in both study areas has fairly high hardness and iron concentrations and is close to saturation with calcium and iron carbonates. Using the groundwater for cooling may induce the deposition of scale containing one or both of these minerals.
- Advanced Energy Systems Division
Preliminary Feasibility Study of Groundwater Source Geothermal Heat Pumps in Mason County and the American Bottoms Area, Illinois Available to Purchase
Lu, X, Larson, DR, & Holm, TR. "Preliminary Feasibility Study of Groundwater Source Geothermal Heat Pumps in Mason County and the American Bottoms Area, Illinois." Proceedings of the ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies. Boston, Massachusetts, USA. June 30–July 2, 2014. V001T05A002. ASME. https://doi.org/10.1115/ES2014-6342
Download citation file: