Electrodynamic Screens (EDS) is a promising alternative for removing dust particles from solar collectors and advantageous compared to the current water-based cleaning methods used widely in solar industries. To operate the EDS for efficient removal of dust layer having different size distributions and compositions of particles, it is necessary to optimize the design of the EDS and the materials used for construction. Since the electric field is the main component in removal of the dust particles, this paper reports optimization of the electric field as the function of geometric parameters of the EDS. For the optimization of the EDS, two distinct objective functions have been defined and the optimal values for the electrode width and inter-electrode spacing have been provided. The EDS model has been implemented in the COMSOL Multiphysics finite element analysis (FEA) software and analytical results have been verified. Based on the optimized parameters, different designs have been gone under fabrication process and then testing. This is a work in progress paper and the experimental results will be provided later to corroborate the higher clearance rates for the optimal designs.
- Advanced Energy Systems Division
Optimization of Electrodynamic Screens for Efficient Removal of Dust Particles
Sayyah, A, Stark, JW, Hudelson, JN, Horenstein, MN, & Mazumder, MK. "Optimization of Electrodynamic Screens for Efficient Removal of Dust Particles." Proceedings of the ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies. Boston, Massachusetts, USA. June 30–July 2, 2014. V001T02A053. ASME. https://doi.org/10.1115/ES2014-6663
Download citation file: