The use of an air curtain blowing across the aperture of a falling-particle receiver has been proposed to mitigate convective heat losses and to protect the flow of particles from external winds. This paper presents experimental and numerical studies that evaluate the impact of an air curtain on the performance of a falling particle receiver. Unheated experimental studies were performed to evaluate the impact of various factors (particle size, particle mass flow rate, particle release location, air-curtain flow rate, and external wind) on particle flow, stability, and loss through the aperture. Numerical simulations were performed to evaluate the impact of an air curtain on the thermal efficiency of a falling particle receiver at different operating temperatures. Results showed that the air curtain reduced particle loss when particles were released near the aperture in the presence of external wind, but the presence of the air curtain did not generally improve the flow characteristics and loss of the particles for other scenarios. Numerical results showed that the presence of an air curtain could reduce the convective heat losses, but only at higher temperatures (>600°C) when buoyant hot air leaving the aperture was significant.
- Advanced Energy Systems Division
Experimental and Numerical Studies of Air Curtains for Falling Particle Receivers
Ho, CK, Christian, JM, Moya, AC, Taylor, J, Ray, D, & Kelton, J. "Experimental and Numerical Studies of Air Curtains for Falling Particle Receivers." Proceedings of the ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies. Boston, Massachusetts, USA. June 30–July 2, 2014. V001T02A049. ASME. https://doi.org/10.1115/ES2014-6632
Download citation file: