Turbine inlet pressures of ∼ 300 bar in case of CO2 based cycles call for redesigning the cycle in such a way that the optimum high side pressures are restricted to the discharge pressure limits imposed by currently available commercial compressors (∼150 bar) for distributed power generation. This leads to a cycle which is a combination of a transcritical condensing and a subcritical cycle with an intercooler and a bifurcation system in it. Using a realistic thermodynamic model, it is predicted that the cycle with the working fluid as a non-flammable mixture of 48.5 % propane and rest CO2 delivers ∼37.2 % efficiency at 873 K with a high and a low side pressure of 150 and 26 bar respectively. This is in contrast to the best efficiency of ∼36.1 % offered by a transcritical condensing cycle with the same working fluid at a high side pressure of ∼ 300 bar.
- Advanced Energy Systems Division
Advanced Low Pressure Cycle for Concentrated Solar Power Generation
Garg, P, Krishna, SH, Kumar, P, Conboy, T, & Ho, C. "Advanced Low Pressure Cycle for Concentrated Solar Power Generation." Proceedings of the ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies. Boston, Massachusetts, USA. June 30–July 2, 2014. V001T02A033. ASME. https://doi.org/10.1115/ES2014-6545
Download citation file: