High-temperature receiver designs for solar powered supercritical CO2 Brayton cycles that can produce ∼1 MW of electricity are being investigated. Advantages of a supercritical CO2 closed-loop Brayton cycle with recuperation include high efficiency (∼50%) and a small footprint relative to equivalent systems employing steam Rankine power cycles. Heating for the supercritical CO2 system occurs in a high-temperature solar receiver that can produce temperatures of at least 700 °C. Depending on whether the CO2 is heated directly or indirectly, the receiver may need to withstand pressures up to 20 MPa (200 bar). This paper reviews several high-temperature receiver designs that have been investigated as part of the SERIIUS program. Designs for direct heating of CO2 include volumetric receivers and tubular receivers, while designs for indirect heating include volumetric air receivers, molten-salt and liquid-metal tubular receivers, and falling particle receivers. Indirect receiver designs also allow storage of thermal energy for dispatchable electricity generation. Advantages and disadvantages of alternative designs are presented. Current results show that the most viable options include tubular receiver designs for direct and indirect heating of CO2 and falling particle receiver designs for indirect heating and storage.
- Advanced Energy Systems Division
High-Temperature Receiver Designs for Supercritical CO2 Closed-Loop Brayton Cycles
Ho, CK, Conboy, T, Ortega, J, Afrin, S, Gray, A, Christian, JM, Bandyopadyay, S, Kedare, SB, Singh, S, & Wani, P. "High-Temperature Receiver Designs for Supercritical CO2 Closed-Loop Brayton Cycles." Proceedings of the ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies. Boston, Massachusetts, USA. June 30–July 2, 2014. V001T02A003. ASME. https://doi.org/10.1115/ES2014-6328
Download citation file: