Previous work at the institution has successfully shown that a novel VAWT design can be employed to provide electrical power to remote rural villages in a cost effective manner. The VAWT’s design can effectively utilize the non-laminar, low level winds and survive the increased turbulence present at remote and non-optimal installation locations. Previous efforts have improved the overall aerodynamic characteristics of the turbine and scaled these designs from a 100W to a 1kW scaled turbine. In order to remain a viable and affordable solution for use worldwide by truly rural users, these turbines need to have low manufacturing cost and low maintenance costs. This paper presents the work done by the authors to analyze the main cost contributors, manufacturing methods, techniques, and tooling used to improve productivity in the manufacturing process. Design improvements and construction materials were analyzed to reduce overall weight which leads to cost reduction and overall improvements in manufacturability. The specific improvements explored by the authors include redesigning the arms of the turbine to improve aerodynamic efficiency of the turbine, reducing construction materials to minimum allowable values, and designing manufacturing tooling which will allow for rapid production of large quantities of the turbine. Results are presented from over 4000 hours of in-situ testing of the turbine showing that the manufacturing improvements reduced construction time to 25% of the original design and reduced weight by 25% while maintaining full functionality and high-wind survivability.

This content is only available via PDF.
You do not currently have access to this content.