Concentrated Solar Power (CSP) systems used for photothermal conversion of solar energy to electricity are capable of meeting a large fraction of the global energy requirements. CSP plants are inherently robust with respect to the availability of materials, technology, and energy storage. However, dust depositions on solar collectors cause energy yield loss annually, ranging from 10 to 50% depending upon their location in the semi-arid and desert lands. Mitigation of energy loss requires manual cleaning of solar mirrors with water. A brief review of the soiling related losses in energy yield of the CSP plants is presented, which shows that cleaning of the CSP mirrors and receivers using water and detergent is an expensive and time-consuming process at best and is often impractical for large-scale installations where water is scarce. We report here our research effort in developing an electrodynamic dust removal technology that can be used for keeping the solar collectors clean continuously without requiring water and manual labor. Transparent electrodynamic screens (EDS), consisting of rows of transparent parallel electrodes embedded within a transparent dielectric film can be integrated on the front surface of the mirrors and on the receivers for dust removal for their application as self-cleaning solar collectors. When the electrodes are activated, over 90% of the deposited dust is removed. A summary of the current state of prototype development and evaluation of EDS integrated solar mirrors and experimental data on the removal of desert dust samples are presented. A brief analysis of cost-to-benefit ratio of EDS implementation for automated dust removal from large-scale solar collectors is included.

This content is only available via PDF.
You do not currently have access to this content.