We report improved performance of Li-ion polymer batteries through advanced gel polymer electrolytes (GPEs). Compared to solid and liquid electrolytes, GPEs are advantageous as they can be fabricated in different shapes and geometries; also ionic properties are significantly superior to that of solid and liquid electrolytes. We have synthetized GPE in form of membranes by trapping ethylene carbonate and propylene carbonate in a composite of polyvinylidene fluoride and N-methylpyrrolidinore. By applying phase-transfer method, we synthetized membranes with micro-pores, which led to higher ionic conductivity. The proposed membrane is to be modified further to have higher capacity, stronger mechanical properties, and lower internal resistance. In order to meet those requirements, we have doped the samples with gold nanoparticles (AuNPs) to form nanoparticle-polymer composites with tunable porosity and conductivity. Membranes doped with nanoparticles are expected to have higher porosity, which leads to higher ion mobility; and improved electrical conductivity. Four-point-probe measurement technique was used to measure the sheet resistance of the membranes. Morphology of the membranes was studied using electron and optical microscopies. Cyclic voltammetry and potentiostatic impedance spectroscopy were performed to characterize electrochemical behavior of the samples as a function of weight percentage of embedded AuNPs.

This content is only available via PDF.
You do not currently have access to this content.