Thermal efficiencies of the solar field of two different parabolic trough concentrator (PTC) systems are evaluated for a variety of operating conditions and geographical locations, using a detailed 3D heat transfer model. Results calculated at specific design points are compared to yearly average efficiencies determined using measured direct normal solar irradiance (DNI) data as well as an empirical correlation for DNI. It is shown that the most common choices of operating conditions at which solar field performance is evaluated, such as the equinox or the summer solstice, are inadequate for predicting the yearly average efficiency of the solar field. For a specific system and location, the different design point efficiencies vary significantly and differ by as much as 11.5% from the actual yearly average values. An alternative simple method is presented of determining a representative operating condition for solar fields through weighted averages of the incident solar radiation. For all tested PTC systems and locations, the efficiency of the solar field at the representative operating condition lies within 0.3% of the yearly average efficiency. Thus, with this procedure, it is possible to accurately predict year-round performance of PTC systems using a single design point, while saving computational effort. The importance of the design point is illustrated by an optimization study of the absorber tube diameter, where different choices of operating conditions result in different predicted optimum absorber diameters.

This content is only available via PDF.
You do not currently have access to this content.