Heat pumps are commonly used for residential space-heating and cooling. The combination of solar thermal and heat pump systems as a single solar-assisted heat pump (SAHP) system can significantly reduce residential energy consumption in Canada. As a part of Team Ontario’s efforts to develop a high performance house for the 2013 DOE Solar Decathlon Competition, an integrated mechanical system (IMS) consisting of a SAHP was investigated. The system is designed to provide domestic hot water, space-heating, space-cooling and dehumidification. The system included a cold and a hot thermal storage tank and a heat pump to move energy from the low temperature reservoir, to the hot. The solar thermal collectors supplies heat to the cold storage and operate at a higher efficiency due to the heat pump reducing the temperature of the collector working fluid. The combination of the heat pump and solar thermal collectors allows more heat to be harvested at a lower temperature, and then boosted to a suitable temperature for domestic use via the heat pump. The IMS and the building’s energy loads were modeled using the TRNSYS simulation software. A parametric study was conducted to optimize the control, sizing and configuration of the system. This paper provides an overview of the model and summarizes the results of the study. The simulation results suggested that the investigated system can achieve a free energy ratio of about 0.583 for a high performance house designed for the Ottawa climate.

This content is only available via PDF.
You do not currently have access to this content.