This research expands on previous work by coupling the in-house Monte Carlo Ray Trace (MCRT) radiation model with the more sophisticated fluid dynamics modeling capabilities of ANSYS FLUENT. This allows for the inclusion of more realistic inlet and outlet geometries in the receiver, as well as a turbulence model and much finer grid sizing. Taken together, these features give a more complete picture of the heat transfer, mixing, and temperature profiles within the receiver than previous models. This flow solution is coupled to the MCRT code, by using the in-house MCRT radiation solver to provide the source term of the energy equation. The temperature data output from FLUENT is then fed back into the FORTRAN MCRT code, via a User Defined Function written in C#, and the two models iterate until convergence. The solar input has been modified from the previous model to provide a Gaussian fit to a calculated flux distribution, which is more realistic than a uniform flux. Initial results for a 5 MW solar input agree with the trend identified in Ruther’s work regarding the influence of particle mass loading on heating in the receiver. The maximum outlet temperature reached is 1430K, which is on target for driving a Brayton cycle gas turbine. Cylinder wall temperatures are consistently below those of the gas boundary layer, and significantly below the maximum gas temperature in the receiver cavity.

This content is only available via PDF.
You do not currently have access to this content.