Multi-blade shaft driven wind turbines depend greatly on the angle of attack as an important factor that the control system monitors such that a maximum amount of aerodynamic force is seen by the rotor blades. This is one significant difference when controlling a Rim Driven Wind Turbine (RDWT). The controller for a RDWT is required to simply point the tower such that it is facing the wind for maximum power generation. This is achieved by incorporating a Variable Speed Direct Drive (VSDD) wind operation control system to control the power production and safe operation of the RDWT. Another consideration for the control system is its integration with the generator. Since the power generation is rim driven, thus operating at a higher variable speed.

With information related to the wind turbine’s diameter and the wind speed at any given time it can be calculated how much power can be potentially generated. This can then be in turn relayed to the generator from the wind turbine controller. This information can be relayed using controller-controller communication (such as an analog voltage signal or protocol based communication such as MODBUS RTU or TCP/IP) representing the power coefficient from Betz’ Law.

A feasibly controllable system implements a signal from the overall wind turbine controller that in turn supplies the generator with how much power is available in the system to maximize power generation for a broad range of traditionally unrealizable wind conditions (3 m/s to 30 m/s). Rim Driven Wind Turbines represent an evolution in fundamental design of how the wind can be harnessed for power.

This paper will discuss the VSDD’s unique design and aspects of maintaining controllability thorough out the overall system operation.

This content is only available via PDF.
You do not currently have access to this content.