Improving thermodynamic efficiency of prime movers is the key issue for efficient utilization of low temperature heat resources. Because of many good characteristics, the single screw expander is perhaps a good choice. Precisions in manufacture and assembly are very important factors to the performance of single screw expanders. In this paper, experimental results of the first single screw expander prototype made by ourselves was analyzed and reported for the first time. From the experimental data, the power output of the prototype was about 5kW, but the gas consumption rate was above 105kg/kWh, so the shaft efficiency was only 34% or so. The results indicated that internal leakage was very serious. Hence, the second single screw expander prototype was manufactured. The gap between gate rotor and shell of the new prototype was reduced. The gap is about 0.02mm. From the new experimental data, the mass flow rate was significantly decreased. However, the power output was only 1.4kW. So, the gas consumption rate was even more than the first prototype. The reason of bad experimental results may arise from the too large friction between screw, gate rotor and shell in the case of small gap. So, we manufactured the third single screw expander prototype, which is 0.04mm in gap. From the experimental data, the maximum power output was about 4.5kW, but the mass flow rate was decreased sharply. So the gas consumption rate was about 60kg/kWh, and the shaft efficiency was about 60%. The result indicated that the performance of the single screw expander was remarkable improved by optimizing its configuration.

This content is only available via PDF.
You do not currently have access to this content.