This paper presents measured performance of the University of Minnesota’s 45 kWe indoor high-flux solar simulator. The simulator consists of seven radiation units, each comprised of a 6.5 kWe xenon short arc lamp coupled to a reflector in the shape of a truncated ellipsoid of revolution. Data include flux distribution at the focal plane for all seven radiation units operating in tandem and for individual radiation units. The flux distribution is measured optically by acquiring the image of radiation reflected from a Lambertian target with a CCD camera equipped with neutral density optical filters. The CCD camera output is calibrated to irradiation using a circular foil heat flux gage. It is shown that accurate calibration of the heat flux gage must account for its response to the spectral characteristics of the radiation source. The simulator delivers radiative power of approximately 9.2 kW over a 60-mm diameter circular area located in the focal plane, corresponding to an average flux of 3.2 MW m−2, with a peak flux of 7.3 MW m−2.

This content is only available via PDF.
You do not currently have access to this content.