A two-step thermochemical cycle for hydrogen production using mixed iron oxides coated on silicon carbide substrates has been investigated. The water-splitting step proceeds at temperatures between 800 and 1000 °C while for the regeneration step temperatures around 1200 °C are needed. A deactivation of the material resulting in a decrease of the hydrogen production within the first couple of cycles was observed in preceding tests. For detailed investigations of the system composed of the redox-material and the substrate small scale samples were tested in a laboratory test-rig. For identification of material changes the samples were investigated via XRD and SEM-EDS analysis. The analysis revealed the reasons for the deactivation of the redox-material. Through parametric studies the influence of the regeneration parameters, namely regeneration temperature and time on the hydrogen production was analysed. A model for the regeneration step was developed describing the performance of the regeneration step as a function of temperature and time and additionally as a function of total regeneration time, i.e. the cumulated time the sample has been regenerated.

This content is only available via PDF.
You do not currently have access to this content.