Evaporative cooling is among the most cost effective methods of air conditioning, but is less efficient in humid climates. An evaporative system coupled with a desiccant wheel can operate effectively in broader climatic conditions. These cooling systems can substitute traditional vapor compression air conditioning systems as they involve environmentally friendly cooling processes with reduced electricity demand (which is commonly generated from fossil fuels) along with no harmful CFC based refrigerant usage. Furthermore, direct utilization of low grade energy sources such as solar thermal energy or flue gas heat can drive the desiccant regeneration process, thus providing economic benefits. This study presents the results of simulations of desiccant cooling system performance for different climate zones of the United States. Solar assisted desiccant air conditioning is particularly useful where there are abundant solar resources with high temperature and humidity levels. Building energy simulations determined cooling energy requirements for the building. Simulation of an evacuated solar hot water collector model provided the heat energy available for regeneration of the desiccant. Solid desiccant of common material such as silica gel used in a rotary wheel is simulated using established validated computer models; this is coupled with evaporative cooling. Transients of the overall system for different cooling loads and solar radiation levels are presented. Finally, feasibility studies of the desiccant cooling systems are presented in comparison with traditional cooling system. Further analysis of the data presents optimization opportunities. Energy savings were achieved in all climatic conditions with decreased effectiveness in more humid conditions.

This content is only available via PDF.
You do not currently have access to this content.