Concentrating solar thermal systems offer a promising method for large scale solar energy collection. It is feasible to use concentrating solar thermal systems for rooftop applications such as domestic hot water, industrial process heat and solar air conditioning for commercial, industrial and institutional buildings. This paper describes the thermal performance of a new low-cost solar thermal micro-concentrating collector (MCT), which uses linear Fresnel reflector technology and is designed to operate at temperatures up to 220°C. The modules of this collector system are approximately 3 meters long by 1 meter wide and 0.3 meters high. The objective of the study is to optimize the design to maximise the overall thermal efficiency. The absorber is contained in a sealed enclosure to minimise convective losses. The main heat losses are due to natural convection inside the enclosure and radiation heat transfer from the absorber tube. In this paper we present the results of a computational investigation of radiation and convection heat transfer in order to understand the heat loss mechanisms. A computational model for the prototype collector has been developed using ANSYS-CFX, a commercial computational fluid dynamics software package. Radiation and convection heat loss has been investigated as a function of absorber temperature. Preliminary ray trace simulation has been performed using SolTRACE and optical efficiency has been evaluated. Finally, the MCT collector efficiency is also evaluated.

This content is only available via PDF.
You do not currently have access to this content.