Receiver tubes (or heat collecting elements — HCE) are a key component of parabolic trough solar thermal power plants. They are mounted in the focal line of the collectors, absorb the concentrated solar irradiance and transfer the absorbed energy to the heat transfer fluid flowing through them. During the design phase of the receiver tubes and for the performance prediction of solar thermal power plants it is helpful to derive their technical properties, like the thermal losses or the temperature field in the receiver tubes, from their physical and geometrical properties. For this purpose, several models have been developed in the past [1–3]. In this paper, the different existing models are presented, compared and assessed. It is found that a simple analytical model is a helpful tool for the fast prediction of the temperature distribution in the receiver tube. Furthermore, a 2-dimensional and a 3-dimensioanl model are compared regarding the heat losses of a HCE at different operation conditions. Both tools show a good agreement with available measurements. Finally with these tools the efficiency factor F is calculated that considers the heat losses of an irradiated receiver compared to that of an un-irradiated receiver. According to the performed calculations, the efficiency factor of parabolic trough receivers is higher than expected.

This content is only available via PDF.
You do not currently have access to this content.