A 4.2 kW solar furnace heliostat was interfaced with a closed-loop control system to manipulate the azimuth and elevation rotational degrees of freedom to continuously align a solar concentrator with the sun. A QP50-6SD2 quadrant photodiode laser beam positioning device, developed by Pacific Silicon and Sensor, was modified to sense the orientation of the sun. The quadrant photodiode was mounted inside a dark box with a pinhole aperture and mounted so that when the heliostat reflects light along the desired axis, the quadrant photodiode relays balanced error signals. These error signals were interpreted with a Basic Stamp 2p40 microcontroller developed by Parallax Inc. LM741 operational amplifiers and ADC0831 analog to digital converters were used for signal conditioning. The 2p40 microcontroller interprets and checks the error signals every 500ms and uses a ULN2803 Darlington Transistor array to activate the heliostat drive motor’s solid-state relays to maintain solar alignment. The closed-loop heliostat control system can track with 1.6 degrees of accuracy. This is closer than the original prediction of 3 degrees. The control system requires user-inputs for initial alignment. Alignment can initiate with the heliostat out of alignment by at least 6 degrees. The versatility of the 2p40 allows subroutines to be programmed in that can handle hysteresis in the slewing of the heliostat, continue tracking as the heliostat begins to wobble from wind gusts, or continue tracking during intermittent shadowing from clouds.

This content is only available via PDF.
You do not currently have access to this content.