A 35,000 ft2 [3,251 m2] Creative Arts instruction building is being constructed on the campus of Haywood Community College in Clyde, NC (∼25 miles [40 km] west of Asheville). The building’s HVAC system consists of a solar absorption chiller, two parallel back-up electric chillers, and radiant floor heating with condensing boiler back-up. Hot water is to be heated by 117 solar thermal panels with thermal energy storage in a 12,000 gallon [45,000 liters] insulated tank and service to both the absorption chiller and the radiant under-floor heating system. Peak cooling loads and unfavorable solar conditions are to be handled by parallel electric chillers, operated in sequence to achieve maximum performance. Emergency radiant under-floor heating hot water back-up is to be handled by gas-fired condensing boilers in the event of unavailable solar heated hot water. This paper will examine the extensive modeling process required of the system as performed in EnergyPlus, how preliminary modeling results influenced the control and design strategy, the annual behavior of the system and the importance of controllability.

This content is only available via PDF.
You do not currently have access to this content.