The focus of this project is on simulation and testing of a novel passive solar heating system that utilizes the one-way heat transfer of heat pipes to significantly improve heating performance relative to conventional passive solar systems. A set of programmed thermal networks were used to simulate the performance of several conventional passive solar heating systems, including direct gain, concrete wall indirect gain and water wall indirect gain, and the heat pipe system. Simulations performed for four US locations representing a range of winter temperatures and available insolation exhibited higher performance for the heat pipe system, particularly in cold climates with low insolation. A small-scale laboratory model was constructed and tested under controlled conditions to confirm simulated system component performance and to test a range of component variations. Measured system efficiency was 85.1 ± 0.72%. A full-scale prototype was constructed, installed and instrumented. Results from a 21-day period in April show a prototype thermal efficiency range from 60–75% and an average of 66.2%; and a 30-day period in October and November ranges from 60–85% with an average of 73.9%. An opaque cover over the prototype, periodically installed to minimize unwanted gains during the cooling season, reduced overall gains by an average of 75%.

This content is only available via PDF.
You do not currently have access to this content.