In this paper we present a road-map for rural electrification in developing countries by means of Renewable Energy based MiViPPs (Microutility virtual power plants). First and foremost a feasibility and viability analysis of the various upcoming and alternative renewable energy options is performed with respect to rural environmental constraints and demands. Renewable Energy based DDG’s (Decentralized Distributed Generation Units) offer the potential for affordable, clean electricity with minimal losses and effective maintenance and local cost recovery. But Independent DDG projects are fraught with their own issues mainly stemming from the unreliable and intermittent nature of the generated power and high costs. We propose an alternative approach to rural electrification which involves off grid DDG units operated at the local level taking advantage of feasible renewable energy technologies, which can effectively serve rural areas and reduce the urgency of costly grid extension. In MIVIPP model, a multitude of decentralized units (renewable energy based units and a non-renewable energy based unit for last mile backup) are centrally controlled and managed as part of an interconnected network, resulting into a virtual power plant that can be operated as a distributed power plant large enough to reliably serve all the local electricity demands in a cost effective manner. Finally, by a set of simulation results we establish how an automated MIVIPP (based on an Intelligent Auto Control System) effectively addresses all the issues pertaining to Dispersed DDG units by leveraging the scalability achieved by mutually augmenting the supplies from different Renewable Energy Based DDG units.

This content is only available via PDF.
You do not currently have access to this content.