In this work, we present a thorough reaction engineering analysis on the modeling of a vortex-flow reactor to show that commonly practiced one-plug reactor approach is not sufficient to explain the flow behavior inside the reactor. Our study shows that N-plug flow reactors in series is the best approach in predicting the flow dynamics based on the computational fluid dynamics (CFD) simulations. We have studied the residence time distribution using CFD by two different methods. The residence time distribution characteristics are calculated by approximating the real reactor as N-ideal reactors in series, and then estimated the number of ideal reactors in series for the model. We have validated our CFD model by comparing the simulation results with experimental results. Finally, we have done a parametric study with a different sweeping gas to identify the best screening gas to avoid carbon deposition inside the vortex-flow reactor. Our results have shown that hydrogen is a better screening gas than argon.

This content is only available via PDF.
You do not currently have access to this content.