Structural health monitoring is a technique devised to monitor the structural conditions of a system in an attempt to take corrective measures before the system fails. A passive structural health monitoring technique is presented, which serves to leverage historic time series data in order to both detect and localize damage on a wind turbine blade aerodynamic model. First, vibration signals from the healthy system are recorded for various input conditions. The data is normalized and auto-regressive (AR) coefficients are determined in order to uniquely identify the normal behavior of the system for each input condition. This data is then stored in a healthy state database. When the structural condition of the system is unknown the vibration signals are acquired, normalized and identified by their AR coefficients. Damage is detected through the residual error which is calculated as the difference between the AR coefficients of the unknown and healthy structural conditions. This technique is tailored for wind turbines and the application of this approach is demonstrated in a wind tunnel using a small turbine blade held with four springs to create a dual degree-of-freedom system. The vibration signals from this system are characterized by free-stream speed. Damage is replicated through mass addition on each of the blades ends and is located by an increase in residual error from the accelerometer mounted closest to the damaged area. The outlined procedure and demonstration illustrate a single stage structural health monitoring technique that, when applied on a large scale, can avoid catastrophic turbine disasters and work to effectively reduce the maintenance costs and downtime of wind farm operations.

This content is only available via PDF.
You do not currently have access to this content.