A novel solar-hybrid gas turbine combined cycle was proposed. The cycle integrates methanol-fueled chemical-looping combustion and solar thermal energy at around 200°C, and it was investigated with the aid of the Energy-Utilization Diagram (EUD). Solar thermal energy, at approximately 150°C–300°C, is utilized to drive the reduction of Fe2O3 with methanol in the reduction reactor, and is converted into chemical energy associated with the solid fuel FeO. Then it is released as high-temperature thermal energy during the oxidation of FeO in the oxidation reactor to generate electricity through the combined cycle. As a result, the exergy efficiency of the proposed solar thermal cycle may reach 58.4% at a turbine inlet temperature (TIT) of 1400°C, and the net solar-to-electric efficiency would be expected to be more than 30%. The promising results obtained here indicate that this solar-hybrid combined cycle not only offers a new approach for highly efficient use of middle-and-low temperature solar thermal energy to generate electricity, but also provides the possibility of simultaneously utilizing renewable energy and alternative fuel for CO2 capture with low energy penalty.

This content is only available via PDF.
You do not currently have access to this content.