Thermally activated systems based on sorption cycles, as well as mechanical systems based on vapor compression/expansion are assessed in this study for waste heat recovery applications. In particular, ammonia-water sorption cycles for cooling and mechanical work recovery, a heat transformer using lithium bromide-water as the working fluid pair to yield high temperature heat, and organic Rankine cycles using refrigerant R245fa for work recovery as well as versions coupled to a vapor compression cycle to yield cooling are analyzed with overall heat transfer conductances for heat exchangers that use similar approach temperatures for each cycle. Thermal-to-mechanical conversion efficiencies of ∼9%, upgraded heat delivered at 150°C, or cooling coefficients of performance of 0.5–0.7 are realized for source temperatures of 120°C, with a nominal 1 kW of heat extracted from the waste heat stream. Ambient sink temperatures of 35°C are used, as well as indoor return air temperatures of 27°C for cycles that produce cooling at 8°C. Comparative assessments of these cycles on the basis of efficiencies and system footprints will guide the selection of waste heat recovery and upgrade systems for different applications and waste heat availabilities. The increased implementation of such waste heat recovery systems in a variety of applications will lead to decreased primary source inputs and sustainable energy utilization.
Skip Nav Destination
ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences
July 19–23, 2009
San Francisco, California, USA
Conference Sponsors:
- Advanced Energy Systems Division and Solar Energy Division
ISBN:
978-0-7918-4889-0
PROCEEDINGS PAPER
Comparative Assessment of Alternative Cycles for Waste Heat Recovery and Upgrade Available to Purchase
Adrienne Little,
Adrienne Little
Georgia Institute of Technology, Atlanta, GA
Search for other works by this author on:
Srinivas Garimella
Srinivas Garimella
Georgia Institute of Technology, Atlanta, GA
Search for other works by this author on:
Adrienne Little
Georgia Institute of Technology, Atlanta, GA
Srinivas Garimella
Georgia Institute of Technology, Atlanta, GA
Paper No:
ES2009-90023, pp. 903-913; 11 pages
Published Online:
September 29, 2010
Citation
Little, A, & Garimella, S. "Comparative Assessment of Alternative Cycles for Waste Heat Recovery and Upgrade." Proceedings of the ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASME 2009 3rd International Conference on Energy Sustainability, Volume 1. San Francisco, California, USA. July 19–23, 2009. pp. 903-913. ASME. https://doi.org/10.1115/ES2009-90023
Download citation file:
25
Views
Related Proceedings Papers
Related Articles
Analysis of Novel Regenerative Thermo-Mechanical Refrigeration System Integrated With Isobaric Engine
J. Energy Resour. Technol (May,2021)
Characterization of a Rack-Level Thermosyphon-Based Cooling System
J. Electron. Packag (September,2024)
Heat Exchanger Design Considerations for Gas Turbine HTGR Power Plant
J. Eng. Power (April,1977)
Related Chapters
Threshold Functions
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Scope of Section I, Organization, and Service Limits
Power Boilers: A Guide to the Section I of the ASME Boiler and Pressure Vessel Code, Second Edition
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential