Threats of climate change and depleted petroleum supplies have prompted the need for eco-conscious alternative energy. This paper introduces a ground-breaking concept for harnessing the sun’s power that is significantly more efficient than existing systems. Solar collectors gather the electromagnetic radiation emitted by the sun and heat a propylene glycol to a high temperature that will then transfer the heat to a working fluid (Care30) through a plate heat exchanger. The Care30 then exits the heat exchanger in a gaseous state, and is passed through a Tesla turbine, which in turn rotates a shaft. The shaft is connected to a generator, which transforms the mechanical energy into electricity. The absorption efficiency of the solar collectors allows for mechanical loses while maintaining the overall efficiency at higher levels than any existing PV based system. Ambient temperatures drastically reduce the effectiveness of flat plate solar collectors, cooling the liquids inside before the heat can be efficiently consumed. In contrast, an evacuated tube collector maintains efficiency during such conditions. The collectors are insulated from ambient temperatures by the vacuum pressure inside the tube. A stainless steel flat plate heat exchanger is used to transfer the heat from the glycol/water solution to the refrigerant, which is sent to the turbine after it has been converted to its gaseous state. The solution also provides freeze protection in colder climates. A heat exchanger then cools the gas, returning it to its liquid state, which completes the cycle for the working fluid. The water used in the heat exchanger is then used as a supplementary heating source for the home, for domestic or radiant heating needs. As it is effective even in environments that compromise the functionality of existing PV systems, the proposed system responds effectively to the need for more efficient alternative energy sources.

This content is only available via PDF.
You do not currently have access to this content.