Thermal energy storage can enhance the utility of parabolic trough solar power plants by providing the ability to match electrical output to peak demand periods. An important component of thermal energy storage system optimization is selecting the working fluid used as the storage media and/or heat transfer fluid. Large quantities of the working fluid are required for power plants at the scale of 100-MW, so maximizing heat transfer fluid performance while minimizing material cost is important. This paper reports recent developments of multi-component molten salt formulations consisting of common alkali nitrate and alkaline earth nitrate salts that have advantageous properties for applications as heat transfer fluids in parabolic trough systems. A primary disadvantage of molten salt heat transfer fluids is relatively high freeze-onset temperature compared to organic heat transfer oil. Experimental results are reported for formulations of inorganic molten salt mixtures that display freeze-onset temperatures below 100°C. In addition to phase-change behavior, several properties of these molten salts that significantly affect their suitability as thermal energy storage fluids were evaluated, including chemical stability and viscosity. These alternative molten salts have demonstrated chemical stability in the presence of air up to approximately 500°C in laboratory testing and display chemical equilibrium behavior similar to Solar Salt. The capability to operate at temperatures up to 500°C may allow an increase in maximum temperature operating capability vs. organic fluids in existing trough systems and will enable increased power cycle efficiency. Experimental measurements of viscosity were performed from near the freeze-onset temperature to about 200°C. Viscosities can exceed 100 cP at the lowest temperature but are less than 10 cP in the primary temperature range at which the mixtures would be used in a thermal energy storage system. Quantitative cost figures of constituent salts and blends are not currently available, although, these molten salt mixtures are expected to be inexpensive compared to synthetic organic heat transfer fluids. Experiments are in progress to confirm that the corrosion behavior of readily available alloys is satisfactory for long-term use.

This content is only available via PDF.
You do not currently have access to this content.