The synthesis and hydrolysis of zinc nanoparticles are carried out in a tubular reactor. A key component of the reactor is a coaxial jet quench device. Three co-axial and multi-inlet confined jets mix Zn(g), steam and argon to produce and hydrolyze zinc nanoparticles. The performance of the quench device is assessed with computational fluid dynamic modeling and measurements of hydrogen conversion and particle size and composition. Numerical data elucidate the impact of varying jet flow rates on temperature and velocity distributions within the reactor. Experiments produce hydrogen conversions of 61 to 79%. Particle deposition on sections of the reactor surface above 650 K favors hydrolysis. Residence time for in-flight particles is less than one second and these particles are partially hydrolyzed.

This content is only available via PDF.
You do not currently have access to this content.